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Abstract

The 12-tone rows in the music of Schoenberg, Webern, and Berg have been thor-
oughly analysed with respect to four transformations: transposition, retrograde, inver-
sion, and a cyclic shift. The corresponding interval sequences, however, have received
far less attention. We use a brute-force numerical search to map out some properties
of the interval sequences in 12-tone rows.

1 Introduction

In the 1920s Arnold Schoenberg came up with the concept of a 12-tone row (TTR) as a device
for composing classical music, and it was later elaborated on by Webern and Berg [4]. A TTR
is effectively a permutation of the 12 notes within an octave, and so there are 12!, or close to
480 million, such tone rows. As a way to add variation to a given TTR it is often modified
by one or more of four transformations: transposition (shifting the pitches up or down by a
constant amount), retrograde (reversing the sequence so that it plays backwards), inversion
(flipping the direction of the pitch changes), and a cyclic shift (splitting the sequence up into
two parts, and swapping them) [5, 8]. Consequently, most analysis has concentrated on how
the set of TTRs is mapped onto itself by a combination of those four transformations. Since
the set is very large not much progress was made until electronic computers became available
in the 1960s [1, 2]. Nowadays, with the availability of sophisticated software for symbolic
mathematics [9] some types of symmetry can be calculated with a few lines of code within
seconds [8]. The set of interval sequences (IS), however, is much harder to analyse and have
not received the same attention with the notable exception of All-Interval Sequences [1, 3],
which are mentioned in Section 4.2.

In modern music, jazz in particular, intervallic soloing is occasionally taught. Bergonzi
[6] uses a system where he systematically defines all combinations of 3, 4, or 5 intervals. The
direction of the movement is indicated by a plus or minus sign (plus means the next pitch
is higher, minus it is lower). He then selects a few examples from each group and presents
them in musical notation.

In the following we consider the twelve notes to be represented by the non-negative inte-
gers from 0 to 11. We calculate the 1st-order difference modulo 12 of all possible permutations
of the integers from 0 to 11, and list a few examples of their properties.
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2 Interval Sequences

2.1 Ordered and Unordered Interval Sequences

As is standard in the field we consider musical notes with the same name to be identical
even when they are in different octaves so that each note can be assigned an integer value in
the range from 0 to 11 [1]. Similarly, when arithmetic is performed modulo 12 the interval
in semitones between adjacent notes can be assigned a value also in the range from 0 to 11.
As an example consider the theme from Schoenberg’s Opus 25, Suite For Piano [11]. As a
permutation p in vector form it can be written'

p=[0 139211 410785 6. (1)

The ordered interval sequence (0IS) i, is calculated as the first order difference A modulo 12
of p where it is assumed that p is periodic (its first element is appended to the end) so that
i, also has 12 elements. Consequently, i, corresponding to p from 1 is

i,=A(p)=[1 2659569191 6. (2)

The unordered interval sequence (ulS) i, is i, arranged into a sorted list, having its smallest
element at the start. Consequently i, corresponding to p from Equation 1 is

i,=[11125566¢69 9 9 (3)

Indexing of the elements is assumed to start at 1, not 0. We note that when i, and i, are
derived from a TTR, they can never contain the value 0. On the other hand, as opposed
to a TTR, both i, and i, can contain repeated elements all the way up to the 12 identical
elements that produce the chromatic scale (all 1s or all 11s) and the cycle of fifths (all 5s or
all 7s).

2.2 Calculating Interval Sequences

Let us denote the set of all permutions of the integers from 0 to 11, which is equivalent to
the set of TTRs, by Pj3?. We can generate the complete set I, of oIS by applying A to all
the 12! elements of Pj5. Furthermore, by sorting each i, we can calculate I, the complete
set of ulS. However, since transposing a TTR does not affect its oIS, just as the derivative
of a function does not change when a constant is added, the number of unique elements in
I, is at most 11! which is 39,916,800, or just under 40 million. We therefore fix the starting
note by setting the first element of p to 0.

The number crunching is done, brute-force, in Octave [10] running on a Linux PC. Permu-
tations are generated by using a port of the algorithm from the Standard Template Library
in C++ [7]. Each vector is packed into a single 8-byte integer by effectively encoding the

'Incidentally, in musical notation the notes are E, F, G, Db, Gb, Eb, Ab, D, B, C, A, Bb. The starting
note is often assigned a value of 0 regardless of which note it is.
2We deliberately do not use the symbol Si5 because our range starts at 0, not 1.



12 elements into an integer base 16°. Calculating the 11! members of the set I, takes of the
order of ten hours but once the encoding is completed it is fast to operate directly on the
integers when sorting and searching. Operations that require unpacking of the integers into
vectors, on the other hand, are slow.

3 General Properties Of Interval Sequences

3.1 Ordered Interval Sequences

In order to get a feel for how the elements i, of I, are distributed let us take a look at
the set they are derived from, Pj5. The number of vectors in Py is 12!, or 479,001,600,
whereas the number of vectors whose elements are integers in the range from 0 to 11 is 12'2,
or 8,916,100,448,256, which is almost 20,000 times larger than |Pjs|. So the TTRs are very
thinly distributed in the space of unconstrained tone rows. In I, there are 11!, or 39,916,800,
vectors whereas the number of vectors in the set whose elements are in the range from 1 to
11 is 1112 or 3,138,428,376,721, which is almost 80,000 times larger than |I,|. Consequently,
1, is approximately four times sparser in the space of interval sequences without zeros than
TTRs are in the space of tone rows. If you pick a vector p of 12 random notes, chances
are 1 to 20,000 that it belongs to Pj5 whereas if you pick a vector i, of 12 random ordered
intervals without zeros, chances are 1 to 80,000 that it belongs to I,.

3.2 Unordered Interval Sequences

Clearly, a random guess on 1i,, without any attempt to constrain its values, is hopelessly
optimistic. For a start, the elements of i, have to sum up to a multiple of 12, otherwise it
cannot correspond to a tone row that is periodic. A more ambitious question is therefore, how
well are the unordered interval sequences i, represented among the partitions of multiples
of 12 with 12 elements? The results are summarised in Table 1.

It is obvious that some partitions are not feasible. For example, a partition that contains
only even numbers cannot generate any of the odd integers in a TTR. Nevertheless, the cov-
erage is remarkably good, with 49,031 unique unordered interval sequences out of a possible
53,934. If you choose a random partition, using only the constraint that it must have 12
elements that sum up to a multiple of 12, chances are better than 90% that its elements can
be reshuffled into a sequence i, that belongs to I,. That is in stark contrast to how sparse
the ordered interval sequences are among the possible permutations of the 49,031 feasible
partitions that make up I,. There are 260,662,566,960 such permutations* compared to the
11! ordered interval sequences in I,. So if you perform a random permutation of the elements
of i, then chances are 1 to 6,530 that the result belongs to I, even when you know i, belongs
to I,.

3The base must be at least 12, of course, and 16 was chosen in the hope that using a factor of two would
speed up execution at the hardware level. Unfortunately, it does not seem to make it any faster, probably
because the processor is wired up to perform calculations in floating point regardless of the variable type
4Calculated with a script in GAP [9].



Table 1: Number of i, compared to partitions of multiples of 12.

Sum | Partitions | Unique i, | Sample i,

12 1 1 1,1,1,1,1,1,1,1,1,1,1,1

24 75 36 1,1,1,1,1,1,1,1,1,2,2,11

36 1,012 798 1,1,1,1,1,1,1,1,3,3,11,11

48 5,079 4,507 1,1,1,1,1,1,1,44,11,11,11

60 12,470 11,470 1,1,1,1,1,1,5,5,11,11,11,11

72 16,660 15,407 1,1,1,1,1,6,6,11,11,11,11,11

84 12,470 11,470 1,1,1,1,7,7,11,11,11,11,11,11

96 5,079 4,507 1,1,1,8,8,11,11,11,11,11,11,11

108 1,012 798 1,1,99,11,11,11,11,11,11,11,11
120 75 36 1,10,10,11,11,11,11,11,11,11,11,11
132 1 1 11,11,11,11,11,11,11,11,11,11,11,11
Total | 53,934 49,031

4 Selected Classes Of Interval Sequences

4.1 Period of i, less than 12 under a cyclic shift

There are only 734 ordered interval sequences that repeat with a period of less than 12
under a cyclic shift’. Four of those are the well known chromatic scale, ascending (all 1s)
and descending (all 11s), and the circle of fifths, ascending (all 7s) and descending (all 5s).
Both repeat for any cyclic shift. Another four have a period of 2. They are 1,9 repeated 6
times; 3,7 repeated; 3,11 repeated (inverse of 1,9); and 5,9 repeated (inverse of 3,7). The
results are summarised in Table 2.

Table 2: The five groups of i, that repeat under a cyclic shift

Period | |I,|/Period | Sample i,

1 4 L. 5. 7. 11.

2 4 1,9, 3,7 3.11.... 5,9...
3 20 117

4 78 11,15

6 628 1,1,1,1,7,7...

The cyclic sequences listed above correspond to the cosets highlighted by Hunter and
Hippel [8] in Table 2. Their cosets of size 24 have a period of 1; size 48 a period of 2; size 72
a period of 3; size 96 a period of 4; and size 144 a period of 6.° Interestingly, i, from different

®Not counting the cyclic shifts that do not correspond to the period. For example, if the sequence 1,1,7...
is counted then the sequence 1,7,1... is implicitly also included

6The coset size is not compatible with our |I,|/Period. The reference serves only to show that cyclic
sequences have a high degree of symmetry.



groups can correspond to the same i,. For example, the sequence 1,1,7... with period 3 and
the sequence 1,1,1,1,7,7... with period 6 both correspond to the i, that contains 8 1s and 4
7s. There are 30 such i,.

4.2 Unique Intervals

Let us denote the number of unique values in an interval sequence by N;. So for i, in
Equation 2 and i, in Equation 3, N; is 5. If we count the unique intervals in all the 11!
interval sequences we get the results shown in Table 3.

Table 3: Number of i, and i, with IN; unique intervals.

N, (1L |1 [2,]/|Z.]
1 4 4 1

2 24 140 6

3 324 | 8,472 26

4 2,423 157,056 65

5 10,880 | 1,629,912 150

6 17,251 | 7,050,672 | 409

7 12,826 | 13,962,864 | 1089
8 4,480 11,951,592 | 2,668
9 769 4,526,544 | 5,886
10 49 606,408 12,375
11 1 23,136 23,136
Total | 49,031 | 39,916,800 | 814

The more unique intervals i, contains, the more permutations can be created from it so
it is not surprising that |I,|/|I,| increases with IV;. Only one i, contains all the integers from
1 to 11: the famous All-Interval Sequence (AIS). Traditionally, the AIS is assumed not to be
periodic so the jump from the last note to the first, which has to be 6, is left out. In 1965
Bauer-Mengelberg and Ferentz [1] were the first to calculate the 1,928 AIS, using ingenious
methods to reduce the number of candidates they had to include in an exhaustive search
on a primitive computer (see also Morris and Starr [3]). Their list deliberately excludes
inversions and implicitly assumes the last interval is 6. By excluding inversions they shorten
their list by a factor of two, and by forcing the last interval to be 6 they capture only two
out of the 12 variations created by a cyclic shift”, thereby further shortening their list by a
factor of six. Consequently, the number of ordered interval vectors is 2 times 6 times 1,928
which is 23,136.

"Since the interval 6 appears twice in each AIS, there are two ways it can be arranged so that its last
element is 6



4.3 i, Equals Its Retrograde

We consider interval sequences with left-right symmetry over both 11 and 12 elements.
Symmetry over 11 elements ignores the last element, and it is effectively treating the sequence
as if it is non-periodic. The two types of symmetry are referred to as Ry; and Ri5. Examples
p11 and pi2 of Ry; and Ry interval sequences are

pu=[2 432511 52 3 4 2 5 (4)

and
P12=[91769101096719]. (5)

R11 symmetry is mirrored across element 6, and the value of element 12 does not matter.
Ry symmetry is mirrored across elements 6 and 7, which have to be identical, and element
12 must have the same value as element 1. Consequently, we would expect R;; to contain
more interval sequences than R;,, and that is indeed the case. There are 23,040 interval
sequences in Ry; and 3,840 in Rjs. Furthermore, in Ry; sequences element 6 is always odd
(and so is the ignored element 12) whereas in R;5 sequences elements 6 and 7 can take any
value except 6.

It is remarkable that when we remove from R;5 the sequences that can be transformed
onto themselves by a cyclic shift we are left with 1,928 sequences out of 3,840. We are also
left with 1,928 sequences when we make the equivalent operation on the 23,136 All-Interval
Sequences (remove the sequences that can be transformed onto themselves by a cyclic shift).
It is tempting to think it is not a coincidence but hard to see a deeper connection between
the two sets.

4.4 i, Equals Its Inverse Retrograde

This property is equivalent to the histogram of i, being symmetric around the value 6. A
sample i, is
i,=[1 22335799 10 10 11] (6)

There are 2160 i, with this particular histogram and one of those is
i,=[1729 10 10 11 9 5 2 3 3]. (7)

Such interval sequences are particularly interesting to musicians because the intervals from
6 to 11 can also be thought of as negative intervals from -1 to -6, and therefore a symmetric
histogram indicates that for each positive interval there is a corresponding negative interval.
In modulo-12 arithmetic we can then consider the sequences in Equations 6 and 7 as

i,=[1 22335 -5 -3 -3 -2 =2 —1] mod 12 (8)

and
i,=[1 -5 2 -3 -2 =2 -1 =3 5 2 3 3] mod 12 (9)

where the elements now sum up to zero. There are 341 i, whose histogram is symmetric
around the value 6, and 186 of these contain the value 6 itself. There are 440,208 i,, or
approximately 1% of all TTRs, associated with the 341 1i,,.

6



5 Conclusions

It has been known since 1965 there are 1,928 All-Interval Sequences (excluding inversions and
10 out of 12 of the possible cyclic shifts). With a brute-force approach we have determined
some further properties of the interval sequences derived from TTRs. There are 49,031
unordered interval sequences, and the histograms of 341 of those are symmetric around the
interval 6. There are only 734 ordered interval sequences that repeat with a period of less
than 12; 3,840 that are left-right symmetric around elements 6 and 7; and 23,040 that are
symmetric around element 6 (thus ignoring element 12).

Although an exhaustive search can be useful in a special case such as this, it does very
little to help explain the underlying properties of interval sequences. The general problem
is easy to define, though: given a positive integer N, what are the properties of the 1st-
order difference modulo N applied to the cyclical permutation group of order N7 Since the
complexity grows factorially any numerical approach will quickly run into a brick wall, with
N greater than 20 most likely out of reach forever. Clearly, an advance in theory is required.
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